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Abstract   New dynamical systems with strange attractors are numerically inves-

tigated in the article. These dynamical systems correspond to the main mathemati-

cal model describing the attitude dynamics of multi-spin spacecraft and gyrostat-

satellites. The considering dynamical systems are structurally related to the well-

known Newton-Leipnik system. Properties of the strange attractors arising inside 

the phase spaces of the dynamical systems are examined with the help of the nu-

merical modelling. 

Introduction  
The investigation of dynamical systems with strange attractors is one of the 

important problems of the modern nonlinear dynamics [1-19]. Especially interest-

ing cases of such systems represent the dynamical systems describing the natural 

behavior of mechanical, electrodynamical, biological, meteorological and other 

systems.  

As the important part of such mechanical systems it is possible to indicate the 

multi-body systems, which dynamics is described by the ordinal differential equa-

tions. As one of the partial cases of such multi-body systems, in this paper we 

consider the mechanical model of the multi-spin spacecraft (MSSC), also called as 

the gyrostat-satellite. As it was shown in previous works [e.g.1-5], the correspond-

ing phase space of differential equations of the MSSC attitude dynamics can con-

tain different forms of strange attractors, including cases of Newton-Leipnik-like 

two-scroll strange attractors [6]. Moreover, in the framework of MSSC dynamics 

the strange chaotic attractors can be defined as one additional dynamical oppor-

tunity, which allows to solve the task of the spacecraft spatial reorientation using 

chaotic properties of its angular motion (that is quite actual in some nontrivial cas-

es of spacecraft motion, including accidents/failures in main control systems) [3-

5]. Therefore, the problem of the strange attractors examination is important not 
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only from the mathematical point of view, but also from the side of possible tech-

nical applications. 
In this work we use the MSSC equations of motion as a mathematical basis 

which allows to write and to investigate the dynamical systems in the form of three 
ordinal differential equations containing strange chaotic attractors of the Newton-
Leipnik type. 

Main dynamical systems  
The MSSC [1-5] represents the multi-body mechanical system with conjugated 

pairs of rotors placed on the inertia principle axes of the main body (fig.1).  

 

 

Fig. 1. The MSSC as the multirotor system 

The equations of angular motion of MSSC around the “fixed” point O (the cen-

ter of mass) [1-5] can be presented in the form: 
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In these equations the following notations are used: ω=[p, q, r]T – the vector of 



the absolute angular velocity of the MSSC main body (in projections on the con-

nected frame Oxyz); ˆ ˆˆ, ,A B C  are the summarized moments of inertia of the 

MSSC; ,e e e

x y zM M M   the external torques acting on the system. The summarized 

rotors’ angular momentums in the considered case are formed by the control sys-

tem in the shape: 

12 0 34 0 56 0; ; ,p q rD p D q D r          
 (2) 

The “external” torques also are created (by thrusters) as follows: 
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 (3) 

In purposes of the fully description of the attitude dynamics of MSSC the dy-

namical system (3) should be supplemented by the kinematic equations for Euler 

(Tait–Bryan) angles defining the rotation of the MSSC connected system Oxyz 

around the “fixed” point O (the mass center) and relatively the inertial coordinates 

system OXYZ: 
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So, as we can see from the dynamical equations (1) (with the definitions (2) 

and (3)), the following constant “controlling” terms/coefficients take place: 

 0 0 0 1 1 1, , , , , , , , , , , constx y z p q rm m m          

The system (1) in addition of (2) and (3) can be rewritten in the form of differ-

ential equations with quadratic right parts: 
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where   30
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, ,i i i i
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 

   is the set of constant parameters, and where 

the designation of the variables are used: ; ; .p x q y r z    The following coef-

ficients [1] of the system (5) have exact values: 
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So, taking into our consideration correspondences (6) connecting the dynamical 

system’s coefficients  , ,i i ia b c  and MSSC parameters 

 0 1 0 1 0 1, , , , , , , , , , ,p x q y r zm m m          with predefined inertia moments 

 ˆ ˆˆ, ,A B C , it is possible to find the concrete numerical values of the constants from 

the set  

  12

0 1 0 1 0 1, , , , , , , , , , ,p x q y r zControl m m m           (7) 

which can be used to providing the appropriate values of the coefficients  , ,i i ia b c  

close to a “target system” with a strange attractor. Due to the incompatibility of the 
indicated sets Coeff and Control we cannot solve this task exactly (as the algebraic 
equations), therefore, to obtain these values we must use some additional algo-
rithms, e.g. the gradient-search method [3, 5]. Then using the algorithm [1] taking 
the Newton-Leipnik system as the “target system”, it is possible to obtain new con-
cretized dynamical systems with strange attractors inside phase spaces. These new 
systems and the corresponding properties are presented in the next section of this 
article. 

The numerical investigation of new strange attractors  
In this section we focus on the numerical investigation of the dynamical systems 
for MSSC obtained in the work [1]. These systems contain strange chaotic attrac-
tors and/or have the regular but very complex dynamical behavior, that is important 
not only from the mathematical point of view, but also from the technical point of 
practical applications. The next subsections of the article present the corresponding 



blocks of the numerical modeling for itch dynamical system of the Newton-Leipnik 
type which were found in [1] and [5].  
 Here it is important to remind [6] the structure of the classical Newton-Leipnik 
system (NL). For the NL equations the following coefficients take place (all other 
coefficients equal to zero):  
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In the NL-system two strange attractors exist (fig.2): the upper attractor (black) 
with initial states (0.349, 0, −0.16), and the lower attractor (blue) with initial states 
(0.349, 0, −0.18). 

 

 

Fig. 2. The classical Newton-Leipnik attractors 

 So, below in the next subsections six new cases of the dynamical systems of the 
NL-type will be described, which are called as “SysA”, “SysB”, “SysC”, “SysD”, 
“Complex1” and “Complex2”. 

The system SysA analysis 

As it was explored in [1], the dynamical system with new strange attractor can be 
built at the following concretized set Coeff of non-zero numerical coefficients:  
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These coefficients correspond to the following MSSC parameters [1]: 
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Then the new system takes place: 

0.4000 1.0738 10.0403 ;

0.0864 0.2471 0.1118 ;

0.1752 4.7831
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  (10)  

The SysA has a new strange chaotic attractor (fig. 3) at the initial values 

     0 0.05; 0 0.1; 0 1.5.x y z    This strange attractor (red) is depicted (fig.3) 

together with the classical “upper” Newton-Leipnik attractor (black).  
 

         

Fig. 3.   The SysA attractor (red), the Newton-Leipnik attractor (black) and the ez-hodograph  

The figure (fig.3) also contain the co-called hodograph (ez-hodograph) which rep-

resents the space curve corresponding to the trajectory motion of the apex of the 

Oz-axis of the MSSC (fig.1) in the inertial space OXYZ, that characterizes the cha-

otic side of the angular motion of the spacecraft. 

In the purposes of the chaotic aspects description of the SysA-system dynamics 

along its strange attractor, we can present the time-history (fig.4) of the spatial an-

gles (4), the Lyapunov’s exponents for the SysA strange attractor and the fast Fou-

rier transform (FFT) spectrum (fig.5) for the x(t)-signal on the attractor. 



           

Fig. 4. The time-history of the angle γ(t) (red), ψ(t) (black), φ(t) (blue) in the SysA system 

       

Fig. 5. The Lyapunov exponents and the spectrum of the fast Fourier transform of the x(t)-signal 

It is important to calculate the Lyapunov’s exponents spectrum and the Kaplan-

Yorke dimension DKY for the SysA strange attractor (evaluated with the tolerance 

10-2): 

 1 2 30.09; 0.00; 0.57 ; 2.17KYD        

As can we see, the Lyapunov’s exponents spectrum has the classical signature for 

strange attractor in 3D-system {+,0,-}; the the Kaplan-Yorke dimension is frac-

tional, and the FFT-spectrum is complex (with non-zero “continuous” ampli-

tudes). All of these notations are the typical properties for chaotic strange attrac-

tors.  

Also it is quite illustrative to show the Poincaré sections for SysA strange attrac-

tor (fig.6-8), that also confirms the fractal nature of the strange attractor. 



           

Fig. 6. The xy-projection of SysA strange attractor and its Poincaré section (by the plane z=1) 

           

Fig. 7. The xz-projection of SysA strange attractor and its Poincaré section (by the plane y=0) 

           

Fig. 8. The yz-projection of SysA strange attractor and its Poincaré section (by the plane x=0)  



The system SysB analysis 

The second case of the MSSC motion with generating the strange attractor realizes 
at the following parameters [1]: 
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Then the dynamical system SysB can be indicated with corresponding coefficients: 
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So we have the new dynamical system 
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with the strange chaotic attractor (fig. 9) at the initial values 

     0 0.05; 0 0.1; 0 1.5,x y z    depicted together with the “upper” Newton-

Leipnik attractor.  

In this case the Lyapunov’s exponents spectrum and the Kaplan-Yorke dimension 

DKY for the SysA strange attractor (evaluated with the tolerance 10-2) are: 

 1 2 30.14; 0.00; 0.61 ; 2.22KYD        

As in the previous case, we see the typical properties for chaotic strange attractors: 

the Lyapunov’s exponents spectrum has the classical signature for strange attrac-

tor in 3D-system {+,0,-}; the the Kaplan-Yorke dimension is fractional, and the 

FFT-spectrum (fig.11) is complex (with non-zero “continuous” amplitudes). The 

Poincaré sections for SysB strange attractor (fig.12-14) confirm the fractal nature 

of the strange attractor. 
 



               

Fig. 9. The SysB attractor (red), the Newton-Leipnik attractor (black) and the ez-hodograph 

        

Fig. 10. The time-history of the angle γ(t) (red), ψ(t) (black), φ(t) (blue) in the SysB system 

      

Fig. 11. The Lyapunov exponents and the spectrum of the fast Fourier transform of x(t)-signal 



             

Fig. 12. The xy-projection of SysB strange attractor and its Poincaré section (by the plane z=1) 

             

Fig. 13. The xz-projection of SysB strange attractor and its Poincaré section (by the plane y=0) 

          

Fig. 14. The yz-projection of SysB strange attractor and its Poincaré section (the plane x=-0.25) 



The system SysC analysis 

The MSSC has the complex attitude dynamics at the realization of the following 
parameters [1]: 
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Then the corresponding dynamical system can be presented:  
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At the initial values       0 0.05; 0 0.1; 0 1.5x y z    the system has the 

phase trajectory (fig.15) similar to the previous strange attractor’s form (e.g. 

fig.3,9) – this complex form was the main reason to define this dynamical system 

as the system with strange attractor in [1]. However, at the more detailed investi-

gation of this system the fact of its regularity was confirmed. As can we see, first-

ly, the regular limit cycle (fig.15-black) is contained inside the phase trajectory; 

secondly, the regular Lyapunov’s exponents take place with the corresponding in-

teger dimension of the attractor (the limit cycle in the form of the 3D-closed-

curve): 1 2 30.00; 0.11; 0.28 ; 1KYD        . Also the simple (discrete and 

concentrated) FFT-spectrum is actual for this regular attractor. 

 
 

         

Fig. 15. The phase trajectory (red) close to the limit cycle of the SysC system (black) 



         

Fig. 16. The ez-hodograph (and its evolution) of the system SysC 

          

Fig. 17. The time-history of the angle γ(t) (red), ψ(t) (black), φ(t) (blue) in the SysC system 

             

Fig. 18. The Lyapunov exponents and the spectrum of the fast Fourier transform of x(t)-signal 



The system SysD 

In the work [5] one more dynamical system with strange attractor was found at the 

following MSSC parameters: 
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As the result, the dynamical system took the form: 

0.4 1.0735 10.0403 ;

0.0864 0.4 0.1118 ;

0.1750 4.7834
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The detailed investigation of the strange attractor (Fig.19) in this system con-

firmed the presence of all properties, which are usual for chaotic fractal objects: 

the Lypunov’s spectrum  1 2 30.10; 0.00; 0.59      has the strange attrac-

tor’s signature {+,0,-}; the fractional dimension 2.16KYD  ; the complex FFT-

spectrum (fig.21) and fractal pictures at the Poincaré sections (fig.22-24). 

 

        

Fig. 19. The phase trajectory (red) and ez-hodograph (black) for the SysD system 

The chaotic angular motion of the MSSC also is illustrated by the complex ez-

hodograph of the Oz-axis apex (fig.19), and by the chaotic time-evolutions for the 

Euler angles (fig.20). 



        

Fig. 20. The time-history of the angle γ(t) (red), ψ(t) (black), φ(t) (blue) in the SysD system 

          

Fig. 21. The Lyapunov exponents and the spectrum of the fast Fourier transform of x(t)-signal 

         

Fig. 22. The xy-projection of SysD strange attractor and its Poincaré section (by the plane z=1) 



         

Fig. 23. The xz-projection of SysD strange attractor and its Poincaré section (by the plane y=0) 

        

Fig. 24. The yz-projection of SysD strange attractor and its Poincaré section (by the plane x=0) 

The system Complex1 

In this section we consider the system which do not include the strange attractors, 
but it has the complex dynamics of phase trajectories, that can be close to the cha-
otic dynamics in the sense of a complexity of the MSSC angular motion.  
In this case the MSSC has the following parameters [1]: 
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Then the dynamical system can be written: 

0.1298 0.1712 0.03886 ;

1 0.7237 0.4003 5.3925 ;

0.1744 4.4904
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In the considered case the complex phase trajectory is generated in the system; and 
this phase trajectory in the stream of time proceeds to the limit cycle depicted at the 
figure (fig.25). 

As it is evaluated for the indicated regular attractor (limit cycle), the Lyapunov 

exponents spectrum  1 2 30.00; 0.09; 0.28        has the signature {0,-,-}; 

the dimensions is integer DKY=1; the FFT-spectrum (fig.27) is simple, concentrat-

ed. The ez-hodograph in this case is regularized (fig.26). 
 

          

Fig. 25. The phase trajectory of the Complex1-system and its limit cycle 

 

           

Fig. 26. The time-history of the angle γ(t) and ez-hodograph (black) for the Complex1 system 



      

Fig. 27. The Lyapunov exponents and the spectrum of the fast Fourier transform of x(t)-signal 

The system Complex2 

At the end of the considering set of dynamical systems with complicated dynamics 

let us present the Complex2 system, which is realized at the MSSC parameters [1]: 

 




2

0 1 0 1 0 1

ˆ ˆˆ100; 250; 300 [kg m ];

_ 2 , , , , , , , , , , ,

2947.8679, 0, 0, 23.5201, 430.1965, 0, 0,

77.3623, 500.7775, 105.2338, 0, 38.9642 ;

p x q y r z

A B C

Control Complex m m m        

   

 

 

 

 (19) 

0.0083 0.0369 0.0423 ;

2 0.1547 0.1137 5.3641 ;

0.0487 4.4058

x x y yz

Complex y x y xz

z z xy

   


    
  

  (20) 

Then in the system’s phase space the complex objet is contained; this object can 

be defined as the complex periodical cycle (fig.28, 31) with two alternate dissipa-

tive scrolls. At the figure (fig.31) this complex periodical cycle is depicted sepa-

rately (at the initial values x(0)=0.1, y(0)=0.0, z(0)=0.0). Evaluations give the non-

negative Lyapunov exponents  1 2 33.45; 0.36; 0.00     for the indicated 

cycle; and it means the exponential instability of this regime and increasing the 

phase volume along this complex cycle. Moreover, the dynamical complexity of 

the regime can be illustrated by the quite complicated FFT-spectrum (fig.30), 

which is rather distributed than concentrated, but decaying. The angular motion of 

the MSSC is in this case is complex and practically chaotic, that confirmed by the 

complex hodograph (fig.28).  



      

Fig. 28. The Complex2 phase trajectory (red) and ez-hodograph  

           

Fig. 29. The time-history of the angle γ(t) (red), ψ(t) (black), φ(t) (blue) in the Complex2 system 

            

Fig. 30. The Lyapunov exponents and the spectrum of the fast Fourier transform of x(t)-signal 

 



         

 

                                    

Fig. 31. Complex periodical cycle in the phase space of the Complex2 system (in projections).  

Conclusion 
In this work the new dynamical systems of the Newton-Leipnik type with strange 

attractors (or with the complex dynamical behavior) were considered with the de-

tailed numerical investigation of corresponding properties and with the evaluation 

of theirs characteristics. The phase spaces of the systems and generated strange at-

tractors (and cycles) were explored, including the study of the main characteristics 

of chaotic/regular dynamics, such as the Lyapunov’s exponents, the fractal dimen-

sion of strange attractors, the fast Fourier transform of the attractors’ signals, the 

Poincaré sections. All of the considered dynamical systems have the “natural 

origin” corresponding to the mechanical and mathematical models of the angular 

motion of spacecraft; and, certainly, the results of the investigation can be applied 

to solving tasks of the spacecraft chaotic reorientation and chaotic maneuvering. 
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